December 1, 2023

Healthy Choice

Healthy Choice The Only Solution

Individualized precision targeting of dorsal attention and default mode networks with rTMS in traumatic brain injury-associated depression

  • Luber, B. M. et al. Using neuroimaging to individualize TMS treatment for depression: Toward a new paradigm for imaging-guided intervention. Neuroimage 148, 1–7. https://doi.org/10.1016/j.neuroimage.2016.12.0831 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping of human brain function. Nat. Rev. Neurosci. 23, 361–375 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzgerald, P. B. et al. A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression. Neuropsychopharmacology 34(5), 1255–1262. https://doi.org/10.1038/npp.2008.233 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Fox, M. D. et al. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc. Natl. Acad. Sci. USA. 111(41), E4367–E4375. https://doi.org/10.1073/pnas.1405003111 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D. & Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry. 72(7), 595–603. https://doi.org/10.1016/j.biopsych.2012.04.028 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weigand, A. et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol. Psychiatry. 84(1), 28–37. https://doi.org/10.1016/j.biopsych.2017.10.028 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cash, R. F. H. et al. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: Independent validation and evaluation of personalization. Biol. Psychiatry. 86(2), e5–e7. https://doi.org/10.1016/j.biopsych.2018.12.002 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cash, R. F. H. et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2020.05.033 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fox, M. D., Liu, H. & Pascual-Leone, A. Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. Neuroimage 66, 151–160. https://doi.org/10.1016/j.neuroimage.2012.10.082 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, N. R. et al. High-dose spaced theta-burst TMS as a rapid-acting antidepressant in highly refractory depression. Brain 141(3), e18. https://doi.org/10.1093/brain/awx379 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ning, L., Makris, N., Camprodon, J. A. & Rathi, Y. Limits and reproducibility of resting-state functional MRI definition of DLPFC targets for neuromodulation. Brain Stimul. 12(1), 129–138. https://doi.org/10.1016/j.brs.2018.10.004 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Siddiqi, S. H. et al. Individualized connectome-targeted transcranial magnetic stimulation for neuropsychiatric sequelae of repetitive traumatic brain injury in a retired NFL player. J. Neuropsychiatry Clin. Neurosci. 31(3), 254–263. https://doi.org/10.1176/appi.neuropsych.18100230 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Siddiqi, S. H. et al. Repetitive transcranial magnetic stimulation with resting-state network targeting for treatment-resistant depression in traumatic brain injury: A randomized, controlled double-blinded pilot study. J. Neurotrauma. 36(8), 1361–1374. https://doi.org/10.1089/neu.2018.5889 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cash, R. F. H., Cocchi, L., Lv, J., Fitzgerald, P. B. & Zalesky, A. Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiat. https://doi.org/10.1001/jamapsychiatry.2020.3794 (2020).

    Article 

    Google Scholar
     

  • Siddiqi, S. H., Weigand, A., Pascual-Leone, A. & Fox, M. D. Identification of personalized TMS targets based on subgenual cingulate connectivity: An independent replication. Biol. Psychiatry. 90, e55–e56 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cole, E. J. et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am. J. Psychiatry 177(8), 716–726. https://doi.org/10.1176/appi.ajp.2019.19070720 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cole, E. J. et al. Stanford neuromodulation therapy (SNT): A double-blind randomized controlled trial. Am. J. Psychiatry 179(2), 132–141. https://doi.org/10.1176/appi.ajp.2021.20101429 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mueller, S. et al. Reliability correction for functional connectivity: Theory and implementation. Hum. Brain Mapp. 36(11), 4664–4680. https://doi.org/10.1002/hbm.22947 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laumann, T. O. et al. Functional system and areal organization of a highly sampled individual human brain. Neuron 87(3), 657–670. https://doi.org/10.1016/j.neuron.2015.06.037 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178. https://doi.org/10.1038/nature18933 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hacker, C. D. et al. Resting state network estimation in individual subjects. Neuroimage 82, 616–633. https://doi.org/10.1016/j.neuroimage.2013.05.108 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Parcellating cortical functional networks in individuals. Nat. Neurosci. 18(12), 1853–1860. https://doi.org/10.1038/nn.4164 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birn, R. M. et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage 83, 550–558. https://doi.org/10.1016/j.neuroimage.2013.05.099 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, M. H. et al. Clinical resting-state fMRI in the preoperative setting: Are we ready for prime time?. Top. Magn. Reson. Imaging. 25(1), 11–18. https://doi.org/10.1097/RMR.0000000000000075 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95(4), 791–807. https://doi.org/10.1016/j.neuron.2017.07.011 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greicius, M. D. et al. Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry. 62(5), 429–437. https://doi.org/10.1016/j.biopsych.2006.09.020 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liston, C. et al. Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol. Psychiatry. 76(7), 517–526. https://doi.org/10.1016/j.biopsych.2014.01.023 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA. 102(27), 9673–9678. https://doi.org/10.1073/pnas.0504136102 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chai, X. J., Castanon, A. N., Ongur, D. & Whitfield-Gabrieli, S. Anticorrelations in resting state networks without global signal regression. Neuroimage 59(2), 1420–1428. https://doi.org/10.1016/j.neuroimage.2011.08.048 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Wong, C. W., Olafsson, V., Tal, O. & Liu, T. T. Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI. Neuroimage 63(1), 356–364. https://doi.org/10.1016/j.neuroimage.2012.06.035 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gordon, E. M. et al. Individual-specific features of brain systems identified with resting state functional correlations. Neuroimage 146(918–939), 918–939. https://doi.org/10.1016/j.neuroimage.2016.08.032 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gordon, E. M., Laumann, T. O., Adeyemo, B. & Petersen, S. E. Individual variability of the system-level organization of the human brain. Cereb. Cortex. 27(1), 386–399. https://doi.org/10.1093/cercor/bhv239 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Siddiqi, S. H. et al. Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nat. Hum. Behav. 5, 1707 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, K. et al. Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive “mild” blast-related traumatic brain injury. Neuroimage 84, 76–96. https://doi.org/10.1016/j.neuroimage.2013.08.017 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Han, K., Chapman, S. B. & Krawczyk, D. C. Disrupted intrinsic connectivity among default, dorsal attention, and frontoparietal control networks in individuals with chronic traumatic brain injury. J. Int. Neuropsychol. Soc. 22(2), 263–279. https://doi.org/10.1017/S1355617715001393 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Horn, H. J. et al. Graph analysis of functional brain networks in patients with mild traumatic brain injury. PLoS ONE 12(1), e0171031. https://doi.org/10.1371/journal.pone.0171031 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caeyenberghs, K., Verhelst, H., Clemente, A. & Wilson, P. H. Mapping the functional connectome in traumatic brain injury: What can graph metrics tell us?. Neuroimage 160, 113–123. https://doi.org/10.1016/j.neuroimage.2016.12.003 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Siddiqi, S. H. rTMS for major depression associated with TBI. Open Science Framework. osf.io/vjddq

  • Van Essen, D. C. et al. The human connectome project: A data acquisition perspective. Neuroimage 62(4), 2222–2231. https://doi.org/10.1016/j.neuroimage.2012.02.018 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341. https://doi.org/10.1016/j.neuroimage.2013.08.048 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Blumberger, D. M. et al. Unilateral and bilateral MRI-targeted repetitive transcranial magnetic stimulation for treatment-resistant depression: A randomized controlled study. J. Psychiatry Neurosci. 41(4), E58-66. https://doi.org/10.1503/jpn.150265 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165. https://doi.org/10.1152/jn.00338.201110.1152/jn.00338.2011 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Cole, M. W., Yang, G. J., Murray, J. D., Repovš, G. & Anticevic, A. Functional connectivity change as shared signal dynamics. J. Neurosci. Methods 259, 22–39. https://doi.org/10.1016/j.jneumeth.2015.11.011 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex. 28(9), 3095–3114. https://doi.org/10.1093/cercor/bhx179 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hamilton, J. P. et al. Default-mode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination. Biol. Psychiatry. 70(4), 327–333. https://doi.org/10.1016/j.biopsych.2011.02.003 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiat. 72(6), 603–611. https://doi.org/10.1001/jamapsychiatry.2015.0071 (2015).

    Article 

    Google Scholar
     

  • Choi, K. S., Riva-Posse, P., Gross, R. E. & Mayberg, H. S. Mapping the “depression switch” during intraoperative testing of subcallosal cingulate deep brain stimulation. JAMA Neurol. 72(11), 1252–1260. https://doi.org/10.1001/jamaneurol.2015.2564 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, K. & Fox, M. D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 154, 169–173. https://doi.org/10.1016/j.neuroimage.2016.11.052 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Cash, R. F. H. et al. Personalized connectivity-guided DLPFC-TMS for depression: Advancing computational feasibility, precision and reproducibility. Hum. Brain Mapp. 42(13), 4155–4172. https://doi.org/10.1002/hbm.25330 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. Left versus right repetitive transcranial magnetic stimulation in treating major depression: A meta-analysis of randomised controlled trials. Psychiatry Res. 210(3), 1260–1264. https://doi.org/10.1016/j.psychres.2013.09.007 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Sale, M. V., Mattingley, J. B., Zalesky, A. & Cocchi, L. Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation. Neurosci. Biobehav. Rev. 57, 187–198. https://doi.org/10.1016/j.neubiorev.2015.09.010 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Opitz, A., Fox, M. D., Craddock, R. C., Colcombe, S. & Milham, M. P. An integrated framework for targeting functional networks via transcranial magnetic stimulation. Neuroimage 127, 86–96. https://doi.org/10.1016/j.neuroimage.2015.11.040 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • link